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Abstract

Progress in engineering biology increasingly depends on data-hungry statistical models to reason
about emergent properties that outstrip unaided human cognition. While purpose-built industrial data-
generation efforts such as perturbation atlases offer a path forward, they do not yet sample sufficiently
broad observational space, especially for rare indications. Aggregated public scRNA-seq datasets form
the world’s largest and most diverse repository of diseases, tissues, and patients, yet remain under-
utilized because manual structuring and annotation are costly. Recent advances in foundation-models
and agentic workflows show promise in autonomous scientific reasoning and software development. We
hypothesized the structure of the curation problem was particularly suited for these emerging technolo-
gies. We introduce latch-curate, an agentic Python framework that guides an expert scientist through an
ordered, step-by-step curation lifecycle and helps them perform tasks like count matrix construction, cell
typing and metadata harmonization with greater efficiency and accuracy.

1 Introduction

Living systems exhibit emergent behaviours across layered molecular, cellular, and tissue scales Kitano
[2002], Millar-Wilson et al. [2022]. Progress in engineering biology increasingly depends on reasoning
about these multiscale interactions that exceed capabilities of unaided human cognition Kitano [2002],
Millar-Wilson et al. [2022]. The combination of large-scale data generation and statistical modelling of-
fers a concrete path forward for basic and translational progress in these new areas of complexity, includ-
ing large foundation models to capture transcriptional statistics Cui et al. [2024], Fu et al. [2025], Zeng
et al. [2025] and industrial perturbational atlases to feed these data-hungry systems Rozenblatt-Rosen et al.
[2017], Subramanian et al. [2017].

In single-cell bioinformatics, curation describes the structuring of raw research data into well-defined
count objects with controlled annotations fit for industrial use Luecken and Theis [2019]. It enables the reuse
of existing experimental data with far less time and resources than de-novo generation Phan et al. [2021],
Skinnider et al. [2021]. Private research labs, data-driven therapeutics companies, and groups developing
biological foundation models use curation at scale to construct large single-cell atlases Tabula Sapiens Con-
sortium [2022] or to train purpose-built models that capture transcriptional statistics Cui et al. [2024], Zeng
et al. [2025].

Public-data curation fills an unmet need in single-cell data aggregation Phan et al. [2021]. While emerg-
ing purpose-built projects are beginning to alleviate limitations of public resources - technology heterogene-
ity, batch effects, quality variation and sparse perturbational sampling - they still cover only a fraction of
the biological landscape and will require time to reach full breadth Luecken et al. [2022], Rozenblatt-Rosen
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et al. [2017], Tabula Sapiens Consortium [2022]. Nonetheless, aggregated public datasets remain the largest
and most diverse reservoir of diseases, tissues and patients Lahnemann et al. [2020]. For indications with
small patient populations or for complex diseases demanding fine-grained stratification, statistical models
must draw on these niche biological states to achieve translational utility Dann et al. [2023].

Despite the value of curated public datasets, these resources remain under-utilized because of the expen-
sive human labour required for curation Puntambekar et al. [2021], Lahnemann et al. [2020]. Curators must
blend PhD-level biological reasoning, single-cell analysis expertise, and data-engineering skills Füllgrabe
et al. [2020], Sheffield et al. [2023]. They devote substantial effort to writing custom code that manipulate
unstructured supplementary files, and comb through study metadata and primary papers for precise anno-
tations Puntambekar et al. [2021]. Variability in scientific literacy, programming proficiency, and general
human error between curators erodes annotation quality Sheffield et al. [2023], Lahnemann et al. [2020],
Hou and Ji [2024].

This is not without harm to scientific progressMarx [2013]. While widespread access to the sum total of
structured public molecular data will lead to new discoveries, tools and platforms, most cannot afford it and
those that can experience quality issues from human variabilityLahnemann et al. [2020], Puntambekar et al.
[2021], Sheffield et al. [2023].

In the past few years, rapid progress in the general-reasoning capabilities of commercial foundation mod-
els shows promise for scientific tasks that rely on natural language Bubeck et al. [2023]. Unlike molecular-
prediction models such as AlphaFold3 and Boltz-2 that require architectural changes and domain-specific
adaptations to model chemical and physical phenomena Abramson et al. [2024], Passaro et al. [2025],
general-purpose LLMs have broad appeal across industries and benefit from favorable trends in capabil-
ity and cost driven by record resource investment and talent inflow Hoffmann et al. [2022]. Even more
recent is the rise of agentic workflows, chains of language-model operations executed in sandboxed com-
putational environments, that can autonomously solve complex problems (e.g., writing functional software)
and correct their own mistakes Yao et al. [2023], Shinn et al. [2023].

We hypothesized the curation problem’s structure is well suited to language models and agentic work-
flows [Brown et al., 2020, Jones et al., 2022]: curators apply scientific reasoning to unstructured papers and
supplements and write tailored code for each task, yielding outputs that can be formally tested.

The entire curation workflow can be decomposed into concrete tasks, each tackled by agentic systems
using domain-rich tool libraries, prompts, and validation tests [Brown et al., 2020, Jones et al., 2022].
Although early prototype results were encouraging, variability in agent performance underscored the need
for human-in-the-loop feedback cycles [Lee and Zhao, 2021]. Full automation remains out of reach, but we
achieved substantial throughput and accuracy gains by deploying tools that augment and collaborate with
human labelers [Smith and Patel, 2023].

We introduce latch-curate, an agentic Python framework that guides an expert scientist through an or-
dered, step-by-step curation lifecycle and autonomously performs concrete tasks such as count-matrix con-
struction, cell-typing, and metadata harmonization Wolf et al. [2018], Luecken and Theis [2019], Yao et al.
[2023], Shinn et al. [2023]. At the end of each task, it presents artifacts, such as reports with plots and
chain-of-thought reasoning, to the human curator and prompts the curator for feedback to approve or correct
its behavior Wei et al. [2022]. latch-curate is deployed on the LatchBio platform and is used by internal
biotech teams and third-party solution providers to greatly accelerate their rate of structured ingestion.

2 Methods

2.1 System Design

latch-curate is a Python library that decomposes the end-to-end curation lifecycle into a sequence of ordered
steps. At each step, the curator launches an agentic task. When the task finishes, the curator reviews

2



intermediate artifacts, either supplying feedback that triggers an automatic rerun or approving the results
and advancing to the next stage.

We begin by outlining the core engineering principles behind the framework, then walk through each
step in detail.

2.1.1 LLM Engineering Principles

1. End-to-End Reasoning As the performance of frontier models continues to improve, we hypothesize
that curation systems built around end-to-end reasoning will scale more effectively than architectures that
rigidly partition function and order among multiple sub-agents. Whenever possible, latch-curate embeds
task context, control-flow decisions, and tool selection within a single model call rather than orchestrating
an array of specialised models with fixed interaction patterns.

2. Precise Validation Criteria We define precise validation criteria to capture edge cases, especially in
agentic loops where test results provide the only feedback signal. Each criterion is split into a natural-
language description, which guides the agent, and a code assertion, which formally verifies the output and
provides clear error logs.

3. Domain Knowledge as Prompts and Tools To minimise novel reasoning per task, domain knowledge
is pulled into prompts and reusable tool libraries. This focuses the model on genuine task variation, boosting
accuracy while reducing runtime and cost. Tools are developed both by hand-coding utilities during manual
cleaning and by mining logs from earlier agentic runs to find recurring operations. Task prompts evolve in
the same way, becoming living documents that record edge cases and pitfalls observed across months of
cleaning.

4. Output Integration To integrate model outputs with conventional software, the model writes driver
scripts to canonical paths and emits JSON data that conform to fixed schemas. Paths and schemas are
validated in code; failures trigger automatic retries with validation errors appended to the prompt.

5. Chain-of-Thought Traces Requesting explicit chain-of-thought traces consistently improves reasoning
accuracy and provides curators with an introspectable record of the model’s logicWei et al. [2022]. These
traces are embedded in the output JSON and surfaced in validation reports.

2.1.2 Curation Principles

1. Understanding the Assignment Most of the engineering effort for this system went into deeply under-
standing the curation task and encoding that domain knowledge into prompts, tool libraries, and tests, rather
than traditional software development. We manually curated ten million cells spanning roughly 200 datasets
and covering more than 80 autoimmune indications to learn which parts of the problem were conserved
and which truly varied. For several months, we delivered data weekly to a biotech company developing
autoimmune therapies, incorporating rapid feedback from domain experts to refine the process. As the cu-
rated volume grew, our prompts, tools, and tests became more robust with exposure to diverse sequencing
technologies, file formats, supplemental structures, study designs, and downstream analytical needs. This
iterative loop ensured the system met the quality bar and translational requirements of real data consumers.
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2. Ontology-Driven Variables Where possible, we relied on well-maintained ontologies with strong sci-
entific backing to populate key variables: MONDO for latch disease, CL for latch cell type lvl 1,
UBERON for latch tissue, and ETF for latch sequencing platformSmith et al. [2007]. On-
tology names and CURIE IDs were concatenated with slashes (e.g., “systemic sclerosis/MONDO:0005100”)
to avoid column duplication. Variable scopes were set in collaboration with data consumers—detailed
enough to capture study-wide nuance while remaining coarse enough to avoid ambiguities. Cell types, for
example, stay at “level 1” (T cells, neutrophils, etc.), allowing users to filter atlases quickly or run specialised
subtyping tools. We adopted the Scanpy ecosystem and AnnData objects as our storage standardWolf et al.
[2018]. Their Python-native design and widespread community support let us reuse tool libraries across
agentic tasks and kept model-generated code readable.

3. Validation Artifacts Creating concise validation artifacts—reports with before-and-after plots that give
curators just enough information to make decisions—proved challenging. Running large, diverse datasets
through the system and iterating with domain experts revealed which plots and metrics mattered most.

4. Parallel Agentic Workflows Human-in-the-loop efficiency scales when curators can juggle many agen-
tic workflows simultaneously. A single task, such as count-matrix construction, may take 5–30 minutes be-
fore it needs human validation. Throughput peaks when enough concurrent runs keep the validation queue
full. Ongoing work aims to streamline curator triage of agentic runs and to boost throughput by dispatching
containerised tasks to workflow-orchestration software.

2.2 Curation Workflow

The curation workflow is broken down into six concrete tasks: data ingestion, count-matrix construction,
quality control, count transformation, cell typing, and metadata harmonization.

Data ingestion and count transformation rely on traditional software tools without language models.
Count-matrix construction, quality control, cell typing, and metadata harmonization use agentic control-
flow, where models operate in feedback loops with code tests and tool access. The count-matrix construction
step also uses a sandboxed computing environment with access to the filesystem and terminal commands.

2.2.1 Data Ingestion

The data-ingestion task aggregates the information required for downstream steps: paper text, study meta-
data, and supplementary files. Software tools search and scrape the relevant data from well-defined locations
in each public database. For a GEO accession, the accession HTML, GSM HTML, SRP metadata HTML,
PRJNA CSVs, and GEO supplementary files are all downloaded into a flat-directory structureEdgar et al.
[2002]. Because modern LLMs can reason efficiently over unstructured data at later stages, we impose little
additional structure on these materials, aggregating, e.g., raw HTML and tabular data in a straightforward
way.

Paywalls and the dynamic web logic used by major journals make it difficult to extract full paper text
consistently. Agentic tools that manipulate the DOM and simulate browser interactions are under develop-
ment to address this issue. When scraping fails, curators are prompted to paste the paper text into a plain-text
file.

2.2.2 Count Matrix Construction

Constructing a well-defined count matrix from unstructured author supplements and study metadata is the
most time-consuming task in curation workflows. We place a model in a sandboxed computing environment,
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with limited access to the filesystem and terminal commands, and instruct it to write code that builds an
AnnData objectWolf et al. [2018] until it passes a suite of tests.

This task directly applies the design principles outlined earlier. Defining precise, exhaustive validation
criteria is essential. For example natural language descriptions are as follows:

• the var index consists of Ensembl IDs,

• there is a var column named gene_symbols containing the symbols, and

• the obs index, var index, and var[’gene_symbols’] are all unique.

These criteria pair with code assertions:

record_and_assert(validation_log,
all(map(bool, map(ensembl_pattern.match, adata.var_names))),
"var index are Ensembl IDs")

record_and_assert(validation_log,
’gene_symbols’ in adata.var.columns,
"var contains gene_symbols")

record_and_assert(validation_log,
adata.var[’gene_symbols’].is_unique,
"gene_symbols unique")

Reusable code tools also play a key role. We implemented functions to reindex and resize matrices and to
map important terms from versioned JSON files. This library is installed in the sandbox and made available
for the model to import or monkey-patch. At this stage, identifying sample-level metadata from previously
downloaded files and adding it as an AnnData column is critical for downstream batch correction and
metadata harmonization.

After each run, the system generates a report containing the validation-suite results, count-matrix statis-
tics, and the obs metadata table. Curators can query the construction process in natural language, surfacing
agent logs and any code written during the task, or provide adjustments that trigger an automatic rerun with
their feedback incorporated into the prompt.

2.2.3 Quality Control

Quality control is a subjective, artisanal process. We built an agentic workflow by studying how curators
reason through the task. Using the paper text and unstructured metadata, we first detect the sequencing
technology and map it to first-pass, conservative thresholds drawn from a table of trusted, pre-computed
values. Next, per-sample quantile tables are computed for each filtering statistic in five-percentile incre-
ments. These tables, together with the same unstructured information, are fed back to the model to compute
adaptive, per-sample filters.

Per-sample and aggregate violin plots are generated before and after each filtering operation and included
in the validation report for human inspection. The filtering thresholds from every pass are written to a JSON
file. Human curators can inspect the report, edit the thresholds in the file, and rerun the task if needed.

2.2.4 Count Transformation

There is no language model involved in this task. The count matrix passes through a standard transformation
workflow: normalization, log transformation, highly variable gene selection, PCA, batch correction, UMAP,
nearest–neighbor graph construction, and community detectionWolf et al. [2018]. Algorithms and parame-
ters are configurable via a JSON file. Batch correction uses the sample–level metadata identified during the
count–matrix construction step.
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2.2.5 Cell Typing

Automatic cell typing is both an active research area and a source of controversy among immunologists.
We sought to identify “level-one” cell types that are granular enough to avoid scientific ambiguity yet broad
enough for downstream use. For example, terms such as “T cell/CL:0000084” and “B cell/CL:0000236” are
included, but not “central memory CD4-positive, alpha-beta T cell/CL 0000904” or “IgG-positive double-
negative memory B cell/CL:0002103”. These terms are defined by the Cell OntologySmith et al. [2007].
In practice, data consumers build large single-cell atlases by filtering on one or more of these level-one
annotations and then apply additional annotation methods of their choice.

We compute differentially expressed genes using a community-detection resolution initially chosen by
the model and write the results to a JSON file. These expression statistics are concatenated with the un-
structured paper text and study metadata and are passed to a language-model agent. The agent attempts to
construct a Python dictionary that maps community clusters to controlled cell-type terms, using ontology-
search tools inside a test loop.

A report containing the mapping, chain-of-thought reasoning, and relevant plots is generated for the
curator. The curator can modify the number of genes computed per cluster, the community-detection res-
olution used to index the clusters, or the final annotations in the JSON file, and rerun the task as needed.
Often at this stage, initial biologically meaningful patterns emerge; for example, poorly separated clusters
may prompt the curator to query the count-construction agent.

2.2.6 Metadata Harmonization

Metadata harmonization refers to constructing a broad set of key variables: subject ID, disease, tissue, tech-
nology, organism, sampling site, treatment, and treatment response. For each variable, the model receives all
unstructured information gathered in the first step and is prompted to create a Python dictionary that maps
sample-level metadata to controlled terms, with access to relevant ontology-search toolsSmith et al. [2007].
Similar to the previous task, a report containing the mappings, chain-of-thought reasoning, and relevant
plots is generated, and the resulting annotations are exposed for modification in a JSON file.

2.3 Tooling

Beyond the core curation workflow, we built supporting tools that help curators manage object consistency,
interoperability, version control, project management, search, and data delivery.

2.3.1 Linting and Conversion

To ensure a consistent object structure, eg., count-construction validation criteria pass and all controlled
variables use a restricted term set, we developed a linting workflow that quickly verifies every task. This
tool catches stray errors and can save teams considerable time on large ingestion projects.

Many computational biologists prefer Seurat to ScanpyHao et al. [2021], Wolf et al. [2018]. Because
reliable conversion libraries were lacking, we implemented a library that converts AnnData objects to
Seurat in pure R by reading the relevant slots from .h5ad files directly on disk, avoiding approaches that
embed Python interpreters inside R sessions.

2.3.2 Version Control and Reproducibility

Curated datasets are living assets, and new computational tools or updated scientific knowledge often require
re-processing previously curated objects. Each task outputs assets - driver scripts, JSON files, agent logs,
and reports - into directories that can be uploaded to version-controlled blob stores. Because the agentic
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workflow runs inside a versioned container with input data mounted to a sandboxed file system at well-
defined locations, rerunning these workflows with modified information is straightforward.

2.3.3 A Data Portal for Project Management and Distribution

As curated data accumulate, project management becomes critical. We built a data portal that stores curated
H5AD files and indexes the metadata generated during curation. Users can search and filter their datasets by
this metadata. The portal supports internal project organization and can also deliver curated data to external
teams or partners.

3 Discussion

The rapid development and deployment of purpose-built statistical models across molecular and systems-
level prediction tasks promise to reduce living systems into deterministic machines that we can understand
and engineer. Early successes in protein folding and protein–ligand interaction with by AlphaFold 3Abramson
et al. [2024] and Boltz-2Passaro et al. [2025] are encouraging first steps. As we progress from molecular in-
teractions to modelling transcriptional states, pathways, cell–cell interactions, tissues, and entire organisms,
scientists and engineers at the intersection of industry and academia will continue to devise new architec-
tures, training techniques, systems software, and hardware. Yet at every stage, the demand for high-quality
structured data remains evergreen.

Publicly available data on the Internet today represent only a fraction of what will exist. Rapid advances
in molecular measurement, high-throughput single-cell assays, single-cell spatial transcriptomics, and spa-
tial epigenetics, are already flooding repositories with high-dimensional dataLuecken et al. [2022]. As these
technologies mature and move into clinical settings, the volume of observational data from niche patient
populations and diverse disease biology will expand rapidly. Curation tools must therefore adapt to new
measurement modalities, scale to larger teams of labelers, and provide robust pipelines for delivering large
quantities of structured data to a new generation of biotechnology organisations.

Code Availability

The latch-curate implementation is intertwined with LatchBio infrastructure across multiple services. As
the framework matures, core components will be extracted and released as an open-source Python package
on GitHub.

Whitepaper Disclaimer

This document is a whitepaper describing a framework in active development. It is not a preprint and will
not be submitted for peer review. Empirical benchmarks for time savings and accuracy are ongoing and will
be published. The author is an engineer, not a scientist.
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